CRDT Sets: Paper to Product

(Or Everything You Always Wanted to Know About ORSets* (*But Were Afraid to Ask))

What?

- Why Riak?
- What is Riak?
- What's a CRDT, anyway?
- A replicated set

SYMCFREEAC

This project is funded by the European Union,
7th Research Framework Programme, ICT
call 10,
grant agreement nº609551.

Why Riak?

Scale Up

\$\$\$Big Iron
(still fails)

Scale Out

Commodity Servers
 CDNs, App servers

Expertise

Low Latency

Low Latency

Amazon found every 100 ms of latency cost them 1% in sales.

Low Latency

Google found an extra 0.5 seconds in search page generation time dropped traffic by 20%.

rade Off

CAP

http://aphyr.com/posts/288-the-network-is-reliable

$$
C \quad A
$$

A

$A P$

Eventual Consistency

Eventual consistency is a consistency model used in distributed computing that informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value.
--Wikipedia

$A P$

Conflict!

Physics Problem

Replica A

Replica B Replica C

"Sue"

Client

Last Write Wins

Conflict!

Replica A

Replica B
 Replica C

["Bob", "Sue"]

[\{a,1\}, \{c, 1\}]

Client

Multi-Value

Semantic Resolution

D) $/$ ๑e. $\cap 0$
 The Shopping Cart

HAIRDRYER

*iriak

PENCIL CASE

*riak

Set Union of Values Simples, right?

Set Union?
"Anomaly"
Reappear

Google F1

"We have a lot of experience with eventual consistency systems at Google."
"We find developers spend a significant fraction of their time building extremely complex and errorprone mechanisms to cope with eventual consistency"

Google F1

"Designing applications to cope with concurrency anomalies in their data is very error-prone, timeconsuming, and ultimately not worth the performance gains."

AO HOC

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA \& LIP6, Paris, France
Nuno Preguiça, crti, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal
Marek Zawirski, InRIA \& UPMC, Paris, France

Join Semi-lattice

*iriak

Join Semi-lattice

Partially ordered set; Bottom; least upper bound

Join Semi-lattice

Associativity: $(\mathbf{X} \sqcup \mathbf{Y}) \sqcup \mathbf{Z}=\mathbf{X} \sqcup(\mathrm{Y} \sqcup \mathbf{Z})$

Join Semi-lattice

Commutativity: $X \sqcup \mathbf{Y}=\mathbf{Y} \sqcup \mathbf{X}$

Join Semi-lattice

Idempotent: $\mathrm{X} \sqcup \mathbf{X}=\mathbf{X}$

Join Semi-lattice

Objects grow over time; merge computes LUB

Join Semi-lattice

Examples
: k riak

Set; merge function: union.

Increasing natural; merge function: max.

Booleans; merge function: or.

Deterministic Idempotent Associative

Commutative

Reusable

defined semantics

Evolution of a Set

Evolution of a Set

Evolution of a Set

Anna

Anna

Evolution of a Set

Evolution of a Set

Replica A

Replica A

Replica B

Shelly

semantics

Evolution of a Set

An Optimized Conflict-free Replicated Set

Annette Bieniusa, INRIA \& UPMC, Paris, France
Marek Zawirski, inrIA \& UPMC, Paris, France
Nuno Preguiça, CrTı, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA \& LIP6, Paris, France
Carlos Baquero, HASLab, INESC TEC \& Universidade do Minho, Portugal
Valter Balegas, citı, Universidade Nova de Lisboa, Portugal
Sérgio Duarte crti, Universidade Nova de Lisboa, Portugal

Dotted Version Vectors: Logical Clocks for Optimistic Replication

Nuno Preguiça
CITI/DI
FCT, Universidade Nova de Lisboa
Monte da Caparica, Portugal nmp@di.fct.unl.pt

Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte, Ricardo Gonçalves
CCTC/DI
Universidade do Minho
Braga, Portugal
\{cbm,psa,vff\}@di.uminho.pt, rtg@lsd.di.uminho.pt

Abstract

In cloud computing environments, a large number of users access data stored in highly available storage systems. To provide good performance to geographically disperse users and allow operation even in the presence of failures or network partitions, these systems often rely on optimistic replication solutions that guarantee only eventual consistency. In this scenario,

The mentioned systems follow a design where the data store is always writable. A consequence is that replicas of the same data item are allowed to diverge, and this divergence should later be repaired. Accurate tracking of concurrent data updates can be achieved by a careful use of well established causality tracking mechanisms [5], [6], [7], [8]. In particular, for data storage systems, version vectors [6] enables the system to compare any pair of replica versions and detect if

Evolution of a Set

\square

[\{a, 1\}, \{b, 3\}]

CRDTs

- Principled Merge
- Data Types with Defined Semantic
- Fine Grained Causality
- Building Block of EC Systems

