
Safe and Secure Programming Using Spark
Angela Wallenburg

Chalmers Tech Talk, 16 February 2015
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Our World - Critical Software

No bugs please!
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Motivating Example

Consider the following few lines of code from the original release of
the Tokeneer code:

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Can you see the problem? This error escaped lots of testing!
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Tokeneer

NSA-funded demonstrator of high-security software
engineering

biometric system for user verification and access control

formal methods used: system specification and security
properties in Z, implementation in Spark

small system (budget), about 10 kloc logical (2623 VCs)

2513 VCs were proven automatically (95.8 %), with 43 left to
the an interactive prover and 67 discharged by review

http://www.adacore.com/sparkpro/tokeneer/

Open source (code, formal spec, project docs). Go and
download!
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The Verifying Compiler

The grand challenge of (building) the verifying compiler [Hoa03]:

A verifying compiler uses mathematical and logical
reasoning to check the correctness of the programs that
it compiles. The criterion of correctness is specified by
types, assertions, and other redundant annotations
associated with the code of the program. The compiler
will work in combination with other program development
and testing tools, to achieve any desired degree of
confidence in the structural soundness of the system and
the total correctness of its more critical components.

5



Practical Issues in Formal Verification

Failed proof attempt. Reasons:

1 There is an error in the contract and/or the program, or

2 The contract and the program are correct but the prover can
not prove it

Need to:

Analyse failed proof attempts

Help the prover by providing additional facts, for example
finding the correct loop invariant

Time-consuming!

How to get enough confidence in the correctness to justify these
tasks?
How to find sooner if there is an error?
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Problem

Testing approach flawed... Proving approach flawed...

Two hurdles in the take-up of verifying compiler technology:

1 the lack of a convincing cost-benefit argument

2 the difficulty of reaching non-expert users

Solution?
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Mixing Test and Proof
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What is Spark?

Spark is...

A programming language...

A set of program verification tools...

A design approach for high-integrity software...

All of the above!
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Static Verification Goals

Ideally we would like static verification to deliver analyses which
are:

Deep (tells you something useful...)

Sound (with no false negatives...)

Fast (tells you now...)

Complete (with as few false alarms/positives as possible...)

Modular and Constructive (and works on incomplete
programs.)

Spark is designed with these goals in mind. Since the 80ies!
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Spark Tradition - Analysable Subset of Ada

Exclude language features difficult to specify/verify
Pointers and aliasing
Exceptions

Eliminate sources of ambiguity
Functions (not procedures) cannot have side-effects
Expressions cannot have side-effects
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Spark Application Domains

Designed for embedded and real-time systems.

Typical systems:

Hard real-time requirements
Little or no Operating System on target (no disk or VM...)
Fixed, known amount of storage

Application domains:

The size of the problem is known in advance i.e. how many
wings, engines, targets, tracks, etc.

Spark was not designed for building GUIs, database
applications, web-servers and so on.

Recently used for large, server-side, safety-critical system
using tasking and richer data types (iFACTS).
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Contracts
Contract: agreement between the client and the supplier of a
service

Program contract: agreement between the caller and the
callee subprograms

Assigns responsibilities

A way to organise your code

Not a new idea (Floyd, Hoare, Dijkstra, Meyer)
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Example Contract

Contracts are about what your code does rather than how it does
it. Example:

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Question: What difference do types make?

15



Types and Contracts

procedure Sqrt (Input : in Integer; Res: out Natural)

with

pre => Input >= 0,

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

With the help of types:

procedure Sqrt (Input : in Natural; Res: out Natural)

with

post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

Less to write!
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Some More Type Examples

Enumerations

type Day is (Mon , Tue , Wed , Thu , Fri , Sat , Sun);

Subtypes

subtype Positive is Integer range 1 .. Integer ’Last;

subtype Week_Day is Day range Mon .. Fri;

subtype Buffer_Range is Integer range 0 .. Max;

Array types

type My_Positive_Buffer is array (Buffer_Range) of Positive;

type String is array (Positive range <>) of Character;

discriminant and variant records, tagged types, array literals, and
much more...
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Observation: Good Fit!

Ada already offers a wide
range of contracts:

Type ranges

Accessibility

Parameter Modes

Generic Parameters

Interfaces

Privacy

Not Null Access

...
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Contracts are Not Only Pre/Post

procedure Open (Customer : in Identity.Name;

Id : in Identity.Id;

Cur : in Money.CUR;

Account : out Account_Num)

with

Pre => not Max_Account_Reached ,

Post => Existing (Account) and then

Belongs_To (Account , Customer , Id)

and then

Money.Is_Empty (Balance (Account ));

Strong typing

Parameters not aliased

Parameters initialised
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Strong Typing (Spark vs C)

Example in C:

int A = 10 * 0.9;

in Ada:

A : Integer := 10 * Integer (0.9);

A : Integer := Integer (Float (10) * 0.9);

Types are at the base of the Spark (Ada) model

Semantic is different from representation

Spark (Ada) types are named

Associated with properties (ranges, attributes) and operators
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Run-Time Errors

A simple assignment statement

A (I + J) := P / Q;

Which are the possible run-time errors for this example?
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Run-Time Errors

A simple assignment statement

A (I + J) := P / Q;

The following errors could occur:

1 I + J might overflow the base-type of the index range’s
subtype (arithmetic overflow)

2 I + J might be outside the index range’s subtype

3 P/Q might overflow the base-type of the element type
(arithmetic overflow)

4 P/Q might be outside the element subtype

5 Q might be zero
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Verification Condition Generation

Type safety (aka No run-time errors)

Arithmetic overflow
Division by zero
Array index range error (buffer overflow)
And many more...
...for every statement in your program...

Partial correctness with respect to pre- and post- conditions
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Motivating Example Revisited

if Success and then

(RawDuration * 10 <= Integer(DurationT ’Last) and

RawDuration * 10 >= Integer(DurationT ’First)) then

Value := DurationT(RawDuration * 10);

else

Failed VC:

procedure_readduration_4.

H1: rawduration__1 >= - 2147483648 .

H2: rawduration__1 <= 2147483647 .

...

->

C1: success__1 -> rawduration__1 * 10 >= - 2147483648 and

rawduration__1 * 10 <= 2147483647 .
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Scaling Up — Interfacing

Spark has solutions for scaling up: interfacing to other languages,
systems, volatiles...
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Scaling Up — Model and Implementation

... Containers, Abstraction, Design, Refinement...
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Programming Language and Program
Verification Research

Automated theorem proving progress: model checking, SAT,
SMT

Challenges in reasoning about mainstream programming
language features [HLL+12]

Aliasing, exceptions, object invariants, subclasses, aggregations

“Non-expert” users studied

Many users are happy to write assertions for dynamic checking

Can those users be convinced to write contracts?

Could they do formal verification?

27



Executable Contracts

Eiffel, JML, Spec#

Executable contract vs formal contract?

The same contract interpreted in two different worlds [Cha10]:

1 Executable boolean expression
2 First-order logic formula

Ada 2012 has executable and formal contracts as part of the
language
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SPARK 2014 - Lessons Learned

Keep the good foundations...
but move a bit in this direction...

Let’s combine the best of two worlds.
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Motivation - Industry Safety Standards

Drives the safety critical software business

Important for cost-benefit argument

do-178b very successful (what does that mean?)

Basis for certification of airborne software

FAA (Federal Aviation Administration)
European Aviation Safety Agency (EASA)

do-178b often used by other industries as well

New standard supplement do-178c [RTC11a, RTC11b]

Using formal methods needs to be “as good as testing”
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Mixing Test and Proof

Modular verification

Low-level requirements expressed as contracts

Successful execution of postcondition → test successful

Successful proof of postcondition → low-level requirement
verified for all input

Some low-level requirements are tested, some are proved

Is the combination as “strong” as all low level requirements
tested?
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Hybrid Verification

Tested Function Proved Function

Proved Function Tested Function

Precondition must be executed

Postcondition must be executed

calls

calls
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Benefits of Hybrid Verification

easily proved

80%

easily tested (80% of 20%)

16%

Helps with gradual introduction to formal proof

The traditional 80/20% rule holds for both formal verification
and testing

More about this approach in [CKM12]
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SPARK 2014 Architecture

Joint development between Altran and AdaCore

Built using the GNAT compiler front-end

Why3 [BFPM11] is the intermediate proof language

Modern implementation of data and flow analysis

GNATprove, the end user tool, can be run from GPS IDE

Under the hood: gnat2why translation

Tools ship with Alt-Ergo and CVC4

More on SPARK 2014 architecture: the convergence of
compiler technology and program verification [KSD12]
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Spark Applications

For an overview of Spark applications, see [O’N12].
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SHOLIS Project (1995)

assists Naval crew with the safe operation of helicopters at sea

safety limits on wind vectors, ship’s roll and pitch for landing,
in-air refuelling

27 kloc (logical) of Spark code, 54 kloc of information-flow
contracts, and 29 kloc of proof contracts, 9000 VCs

no operating system and no COTS libraries of any kind

75.5% proven automatically by the Simplifier

lesson: state abstraction and refinement needed, later
implemented, read more about SHOLIS: [KHCP00]
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Lockheed-Martin C130J Project
most recent generation of the very successful “Hercules”
military transport aircraft
the Mission Computer application software is written in
Spark
subject to a large verification effort in the UK (UK RAF)
Spark analysis, including verification of partial correctness for
most critical functions with respect to the system’s functional
specification, which was expressed using the “Parnas Tables”
notation.
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iFACTS Project - Scaling up
tool for NATS en-route air-traffic controllers in the UK [Rol]

most ambitious Spark project to date, starting in 2006

a formal functional specification (Z)

250 kloc logical lines of code, in Spark

proof of type-safety, few functional correctness proofs

152927 VCs, of which 151026 (98.76 %) are proven
automatically, 1701 VCs discharged with user rules

proof is reconstructed daily (and overnight)
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SPARKSkein Project - Fast, Formal, Nonlinear

2010, we implemented the Skein hash algorithm in Spark
[CBW11]

goal: show that a “low-level” cryptographic algorithm like
Skein could be implemented in Spark

complete proof of type safety, readable and “obviously
correct” with respect to the Skein mathematical specification

as fast or faster than the reference implementation in C

unexpected discovery of a subtle corner-case bug in the
designers’ C implementation: an arithmetic overflow, which
leads to a loop iterating zero times, which leads to an
undefined output
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Secunet’s Isabelle Spark Plugin

Secunet kept pushing the boundaries of expressiveness in
Spark contract language

Stefan Berghofer (Secunet) implemented an Isabelle/HOL
plug-in [Ber11] for Spark proof functions

released under free software license

fully verified big-number library which they have used to
implement RSA
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Muen Project

FLOSS separtion-kernel for the x86 64 architecture

span off from the work of Secunet

almost the entire kernel is written in Spark

automated proof of type-safety

http://muen.codelabs.ch/
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Vermont Tech CubeSat

14 mini satellites launched in November 2013
NASA ELaNa IV (Educational Launch of Nanosatellites)

the only still fully operational mini satellite from this launch

programmed mostly by undergraduate students

several students with little or no overlap in time

Prof. Carl Brandon attributes success of project Spark

slides about project: http://www.cubesatlab.org/doc/

Essex-High-School-2014-10-28.pdf
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Ironsides

Ironsides is an authoritative DNS server implemented in
Spark [CF12]

provably invulnerable to many of the problems that plague
other servers

by Dr. Martin C. Carlisle, director of the Academy Center for
Cyberspace Research at the United States Air Force Academy

http://ironsides.martincarlisle.com
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Robot Navigation Software

Piotr Trojanek and Kerstin Eder re-implemented well-known
robot navigation algorithms in Spark [TE14]

aimed at automatic verification of absence of run-time errors

errors found in the Spark implementation were also errors in
the widely used C versions

errors found simply by testing, same simulation environment
as with the C programs, Spark (and Ada in general) had
run-time checks detect out of bounds errors

bonus effect: Piotr Trojanek started to contribute to the
Spark tools (open source), switched from a career in
robotics, and is now hired as a permanent Spark team
member at Altran UK!
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Important Steps on the Way, 20 years

Organisational:

consultants, users, customer support, partnership, open-source

Technical:

“user rules”, user-defined axioms

quantifier support for completeness

performance: use of processors, caching of VCs [BS12]
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Counter Example Generation

Riposte by Martin Brain (Bath/Oxford) and Florian Schanda
(Spark, Altran) [SB12]

Used ASP (Answer Set Programming) on vintage Spark to
find counter examples

sound and could be used as a prover too

Fab side-effect: test suite with large portion of falsifiable VCs

Currently experimenting with CVC4 counter examples
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SMT and Victor

by Paul Jackson, University of Edinburgh

Victor [JP09] is an SMT translator and prover driver

complementary to Simplifier (in-house Prolog prover), part of
earlier Spark tools, to discharge more VCs

for SPARKSkein, 100 % of all VCs discharged automatically

used also to audit user rules, in search of contradictions
among axioms [JSW13]

shipped with Spark tools
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Research Productisation Experiences
Large effort:

porting to large number of platforms, can be very nasty

nightly build & test, ability to fix bugs and ship wavefronts

tuning 50+ command line flags and write user-friendly
wrapper

adapt POGS (proof obligation summary)

large testing effort: adapt test suites, scripts to analyse test
results

bugs: parsing, type checking, axiom generation, soundness
bugs etc.

deterministic and predictable use of resources by provers

There is a lot of complexity in real systems. Question for any
seemingly elegant theory: does it scale?
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Challenges

False alarm rate

Usability: what to do with failed proof attempts?

Managing Assumptions

Benchmarks with falsifiable properties desirable

Deterministic and predictable results

Loops

Floating-point verification

Teaching...
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Recent/Ongoing Research Projects
Formal semantics of SPARK 2014 in Coq [CAC+13], CNAM,
KSU

Early work on dealing with assumptions [KCC+14], Altran and
AdaCore
Floating-point verification, Oxford, Altran

SMT theory for IEEE-754 floating point reasoning: http:

//smtlib.cs.uiowa.edu/theories/FloatingPoint.smt2

Current version of semantics document:
http://smt-lib.org/papers/BTRW14.pdf

More advanced information-flow analysis, KSU, Rockwell
Collins, [BHR+11]

Declassification policy for information-flow analysis, KSU,
AdaCore, Altran

Case studies with SPARK 2014: Mitsubishi Electric, Astrium

ProofInUse http://www.spark-2014.org/proofinuse/,
INRIA and AdaCore: bitvectors and counter examples
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Spark - Teaching
Consider teaching Spark:

formal and sound

contracts, programming
language based program
verification

industrially used

open source

mature tools

support for academic faculty

code examples, problems and
sample answers

excellent books; new book 2015
(Chapin, McCormick) in press,
Barnes’ book 3rd edition

SPARK
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ith Altran Praxis
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HIGH INTEGRITY
SOFTWARE

JOHN BARNES with Altran Praxis

The proven
approach to
High Integrity
Software

SPARK is a programming language and static verification 

technology designed specifically for the development of high 

integrity software. First designed over 20 years ago, SPARK 

has established a track record of use in embedded and critical 

systems across a diverse range of industrial domains where 

safety and security are paramount.

This third edition of the SPARK book is a major update which 

covers more recent additions to the SPARK language and tools, 

including significant improvements to the power of the SPARK 

proof system and the use of RavenSPARK for multitasking 

programs.

From basic principles through to the use of advanced proof 

techniques, John Barnes provides both an informal introduction 

and a reference guide for those wishing to develop high 

integrity software using SPARK. 

The downloads accompanying this book are available via

www.sparkada.com/book and include: 

- GPL edition of the SPARK tools 

- Source code of examples that appear in the book 

- GPL edition of the GNAT compiler and accompanying IDE

“The key to the use of 
any Formal Method, is 
the definition of a formal 
notation and the creation of 
useful analysis tools which 
are sound. This book is an 
invaluable aid to anyone 
attempting to use SPARK 
with the DO-178C Formal 
Methods supplement or 
without it.”

Duncan Brown CEng FBCS
Chief of Systems Capability

Aero Engine Controls

“This is the indispensable 
handbook for SPARK. John 
Barnes imparts knowledge 
and wisdom with wit and 
style.”

Martyn Thomas CBE FREng
Vice President

Royal Academy of Engineering

“From principles of mod-
ular program design, to 
writing specifications, to 
using the SPARK tool 
chain to discharge proof 
obligations, this book gives 
insight and expert guidance 
into the process of verifying 
programs to be free from 
run-time errors.”

Dr. K. Rustan M. Leino
Principal Researcher

Microsoft Research
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Resources & Getting Started

http://www.spark-2014.org/

Spark Community Page: http://libre.adacore.com/

tools/spark-gpl-edition/community/

GAP - GNAT Academic Program

Open-source, GPL release of Spark tools
http://libre.adacore.com/home/academia/

Support from Spark team for faculty

Getting Started

Download the tools:
http://libre.adacore.com/download/

User Guide:
http://docs.adacore.com/spark2014-docs/html/ug/,
chapter 5, Spark tutorial, is a good start
Spark 2014 Reference Manual:
http://docs.adacore.com/spark2014-docs/html/lrm/

New to Ada? See http://university.adacore.com/
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